able 1 contains information on plant attributes. The difference between early and late ripening was The parentage of a rootstock will determine four to eight days. Rootstocks had little impact on characteristics such as tolerance to calcareous the sugar content of fruit. Only SAPO 778 produced soils and salinity, and susceptibility to fungal infec-significantly lower sugars than other rootstocks when grown in sandy soils. tions and nematodes.

Table 1: Parentage and plant attributes

ROOTSTOCK	PARENTAGE ¹	GROWTH VIGOUR	RIPENING	FRUIT SIZE	CHILLING REQUIREMENT
Atlas	P. persica x P. davidiana x P. dulcis x Prunus x blireiana	Moderately strong	Late	Very good	250 – 550+ PCU ²
Cadaman	P. persica x P. davidiana	Very strong	Middle	Good	250 – 550+ PCU ²
Flordaguard	P. persica x P. davidiana	Very strong	Early	Good but small if high num- bers of ring nematodes occur	100 – 550 PCU ² Frost sensitive
Garnem	P. persica x P. dulcis	Very strong	Middle	Very good	350 - 550+ PCU ² Lower limit unknown
GF 677	P. persica x P. amygdalus	Moderately strong	Middle	Good but small with nectarines	250 – 550 + PCU ²
Guardian	P. persica	Moderately strong	Middle	Small like Kakamas seedling but better total yield	250 – 550 + PCU ²
Kakamas seedling	P. persica	Semi-dwarfing	Early	Small if under stress especially on sandy soils	200 – 550+ PCU ²
Marianna	P. cerasifera x P. munsoniana	Moderately strong	Middle	Good but small if high num- bers of ring nematodes occur	350 – 550+ PCU ²
Maridon	Tetraploid of Marianna	Semi-dwarfing	Middle	Good but small if high num- bers of ring nematodes occur	350 – 550+ PCU ²
Royal seedling	<i>P. armeniaca</i> cv. Blenheim Royal	Moderately strong	Middle	Good	350 – 550+ PCU ²
SAPO 778	P. persica x P. amygdalus	Moderately strong	Middle	Very good	350 - 550+ PCU ²
Viking	P. persica x P. davidiana x P. dulcis x Prunus x blireiana	Moderately strong	Late	Good but small if high num- bers of ring nematodes occur	250 – 550+ PCU ²

¹Prunus persica = peach P. amygdalus = P. dulcis = almond *P. armeniaca* = apricot Prunus x blireiana = P. mume x P. cerasifera P. cerasifera = purple-leafed plum P. davidiana = Chinese wild peach P. munsoniana = Munson plum

P. mume = Japanese apricot

Stone Fruit Rootstocks Zevisited

We bring you an update on our rootstock series from the December issue — now including salinity tolerance and drought sensitivity.

Information provided by Dr Piet Stassen with input from Petru du Plessis.

he success of any rootstock is built upon efficient feeder roots. When nursery trees lack with low chill, but it is not always well hardened off. feeder roots, have inadequate reserves or are not properly hardened off, they may struggle to estab- early cultivars. Maridon does poorly in the Little lish in the orchard. This is especially true of clonal rootstocks.

Tree production is a slow process — trees must be ordered two years in advance to ensure availability of the preferred rootstock. Failure to plan ahead could mean settling for an inferior second choice.

Flordaguard is an excellent rootstock for early healthy trees with an extensive network of cultivars grown on deep, well-drained soils in areas

> SAPO 778 is not suitable for low-chill regions or Karoo but is outstanding in the Simondium region where bacterial canker may occur.

> Rootstock choice impacts the entire lifetime performance of an orchard. Growers would do well to consult a specialist technical adviser when making their selection.

²PCU = Positive Chill Units

 \mathcal{I} the soil texture preferences of stone fruit tute very high salinity for stone fruit. rootstocks.

• oil texture plays an important role in the conductivity of more than 300 mS/m and sodium performance of rootstocks. Table 2 shows levels of more than 9 mg/l in irrigation water consti-

Rootstocks with plum parentage can tolerate Table 3 provides soil and climatic preferences. higher salinity than those with peach parentage. Most stone fruits are sensitive to salinity. Electrical Peach-almond hybrids have intermediate tolerance.

Table 2: Soil texture preferences

ROOTSTOCK	90 – 95% SAND	80 – 90% SAND	20 – 35% SILT + CLAY. CLAY LESS THAN 20%	20 – 30% CLAY	COMMENTS
Atlas	Yes	Yes	Yes	Moderately tolerant	A good overall rootstock for a wide range of soils
Cadaman	Yes	Yes	Yes	No.	Good for sandy soils
Flordaguard	Yes	Yes	No	No	Excellent for deep, well-drained, sandy soils. Not for wet or calcareous or alkaline soils.
Garnem	Not known.	Yes	Yes	No	Vigorous especially in less than 80% sand
GF 677	No	No	Yes	No	Very sensitive to over-irrigation and poor drainage
Guardian	Not known.	Yes	Yes	Moderately tolerant	Not for calcareous soils
Kakamas seedling	No	No	Yes	No	Easily stressed in sandy and stony soils
Marianna	No	Yes	Yes	Moderately tolerant	Shallow horizontal root system that can grow in soil depth of 450 mm if well-managed
Maridon	No	Yes	Yes	Moderately tolerant	Shallow horizontal root system that can grow in soil depth of 450 mm if well-managed
Royal seedling	No	Yes	Yes	No	Excellent for well-drained shales
SAPO 778	No	Yes	Yes	Moderately tolerant	Can have synchronisation problems with early cultivars. Very sensitive in sandy soils with fluctuating water tables.
Viking	No	Yes	Yes	Yes	Not recommended for sandy or stony soils

wet conditions.

Even short-term waterlogging will cause dieback in Flordaguard, Garnem and GF 677 from infections and root rots. Kakamas seedling will also be affected but is less prone to dieback. Marianna and

Table 3: Soil and climatic preferences

ROOTSTOCK	SALINITY ¹	WET SOILS	DROUGHT SENSITIVITY	CALCAREOUS SOILS	CHLOROSIS
Atlas	Sensitive	Sensitive	Moderately tolerant	Tolerant	Shows lime-induced iron chlorosis under free lime conditions but influence on performance not detected
Cadaman	Sensitive	Sensitive	Moderately tolerant	Tolerant	Only minor yellowing symptoms
Flordaguard	Very sensitive	Very sensitive	Moderately tolerant	Very sensitive	100% leaf chlorosis
Garnem	Sensitive	Very sensitive	Moderately tolerant	Tolerant	Only minor yellowing symptoms
GF 677	Moderately sensitive	Very sensitive	Moderately tolerant	Tolerant	Only minor yellowing symptoms
Guardian	Sensitive	Sensitive	Moderately tolerant	Sensitive	Shows yellowing symptoms
Kakamas seedling	Very sensitive	Very sensitive	Sensitive in sandy soils	Very sensitive	100% leaf chlorosis
Marianna	Moderately tolerant	Moderately tolerant	Sensitive in sandy soils	Moderately sensitive	Shows yellowing symptoms
Maridon	Moderately tolerant	Moderately tolerant	Sensitive in sandy soils	Moderately sensitive	Shows yellowing symptoms
Royal seedling	Sensitive	Very sensitive	Moderately tolerant	Very sensitive	100% leaf chlorosis
SAPO 778	Very sensitive	Sensitive	Not for sandy soils and early cultivars	Very sensitive	100% leaf chlorosis
Viking	Moderately sensitive	Sensitive – tolerant	Sensitive	Tolerant	Show lime-induced iron chlorosis under free lime conditions but influence on performance not detected

¹Maximum electrical conductivity that will not reduce yield: a) in soil = 110 mS/m for peaches and 100 mS/m for plums b) irrigation water = 170 mS/m for peaches and 150 mS/m for plums.

Maximum chloride concentration:

a) in soil = 886 mg/l for Marianna and 355 mg/l for Kakamas seedling b) irrigation water = 603 mg/l for Marianna and 238 mg/l for Kakamas seedling

All available stone fruit rootstocks are sensitive to Maridon are more tolerant during winter but sensitive in the initial growing period.

16

11001

1100101

00001011

11100101 0001011

100**0**01**01**1

11001

110

00001

110010

0000101

00100101 0000

11001010

0000101

11001010

010100 00101011

00101111

10010100

0010111

010101

001011

01010

010111

001010

0010111

010**1**0

00101111

101011

0101111

00101011 001011

0010101

0010111

1001010

10111

010101

01010

010101

010111

0010100

00101011

0010111

001**0**1

01010

00101111

101011

010111

10111

1001010

00101011

1001010

Bacterial and fungal infections are more established root systems **FQ** common in wet conditions.

able 4 summarises the resistance of the differ-symptoms are non-specific. Young root systems ent rootstocks to nematodes and diseases. are more sensitive to high nematode numbers than

Nematode damage is often underestimated because the culprits are in the soil and above-ground

Table 4: Resistance to nematodes and diseases

ROOTSTOCK	INFECTIONS BY FUNGI AND BACTERIA	ROOT-KNOT NEMATODE ¹	RING NEMATODE ¹	ROOT-LESION NEMATODE ¹	NEMATODE COMMENTS
Atlas	Tolerant	Resistant	Moderately tolerant	Moderately tolerant	High ring nematode numbers do not affect yield and fruit weight
Cadaman	Sensitive	Resistant	Moderately tolerant	Sensitive	High ring nematode numbers do not affect yield and fruit weight
Flordaguard	Sensitive	Immune	Sensitive – tolerant	Sensitive	Sensitive to high numbers of ring nematodes. Reduce fruit weight.
Garnem	Very sensitive	Resistant	Moderately tolerant	Tolerant	Good host but still performs well when ring nematodes occur
GF 677	Very sensitive	Very sensitive	Sensitive	Very sensitive	High ring nematode numbers reduce fruit weight. More sensitive in sandy soils.
Guardian	Tolerant	Resistant	Tolerant	Moderately tolerant	Need more information on sandy soils
Kakamas seedling	Tolerant	Very sensitive	Sensitive	Sensitive	Very sensitive to high numbers of ring nematodes. Reduce fruit weight.
Marianna	Very sensitive	Immune	Very sensitive	Sensitive	Very sensitive to high numbers of ring nematodes. Reduce fruit weight.
Maridon	Very sensitive	Immune	Very sensitive	Sensitive	Very sensitive to high numbers of ring nematodes. Reduce fruit weight.
Royal seedling	Very sensitive	Tolerant	Very sensitive	Sensitive	Very sensitive to high numbers of ring nematodes. Reduce fruit weight.
SAPO 778	Sensitive	Tolerant	Resistant – tolerant	Sensitive	More sensitive in sandy soil and when scion and rootstock not synchronised
Viking	Tolerant	Resistant	Tolerant – Sensitive	Sensitive	Sensitive to ring nematodes in stony and sandy soils during summer months

Immune = rootstock is not a host

Resistant = rootstock is a poor host

Tolerant = rootstock is a host but nematodes do not impact its performance

Moderately tolerant = rootstock is a good host but nematodes

do not impact its performance

Sensitive= nematodes impact rootstock negatively

Very sensitive = nematodes have severe negative impact on rootstock

Getting More Out Of Monitoring

Is there a missed opportunity?

ugh Campbell, general manager can transform complicated data into easily-understood visual data — it can give the grower the aha! of Hortgro Science, asks whether moment at the press of a button. monitoring represents missed opportunities. In an interview with Fresh Quarterly, MOVING BEYOND ORCHARD MANAGEMENT he shared his thoughts on the potential of I see a window of opportunity to standardise a standardised monitoring system where monitoring information relating to phytosanitary data is captured electronically. An inclusive requirements. For example fruit fly — we're in the process of finalising the European Union protocol database could be used to manage pests for the systems approach. The systems approach and improve market access at a regional is a management tool that is allowed according to and national level. It would also allow the International Plant Protection Convention rules industry to take advantage of new technolwhereby you need to implement two or more ogies such as machine learning. independent measures to meet the phytosanitary requirements of the importing country.

The basis of a monitoring system is to give you One of the foundations of the systems approach information on which to make orchard-based is monitoring. So now something that was done decisions so as to manage your pests and diseases. from an orchard management point of view is being Any system that you design has to have functiontranslated into a regulatory process. ality at that level. The bigger picture is that you can demonstrate

The ideal would be a standardised monitoring different levels of risk for regions. If a region is an system where everyone uses the same protocol. area of no or low pest prevalence, you can claim This would allow you to capture the information at that status, and it allows you - in a systems orchard level for growers to make orchard-based approach — to have different levels of intervention. decisions, as well as to pick up regional trends. You can even take it down to a place of production. For example you could see the early onset of boll-For example if you had everything under nets and worm in a certain area — because you have your you can provide data to substantiate that there are early indicator areas just as you have hotspots on no signs of the relevant organism and it has been a farm. You could see that there's a problem develinspected by an official for a specified period – that oping. Matthew Addison, Hortgro's crop protection would free you up from implementing any further programme manager, has been advocating this control measures as the unit would be officially approach for many years. recognised as being pest-free for that organism.

Monitoring gives you the tools to manage pests at low populations and to pick up shifts in pest status early. Take for instance codling moth — by the time you see the damage in the bin, it's too late.

One of the biggest advantages of a digital system is the opportunity to transform monitoring data The potential is greatest for pests that need to into maps and overlays so that you can look at be managed on an areawide basis. If you look at trends. In a question of three minutes you can global trends, that's becoming the basis of effective pick up trends within an orchard, across orchards, management — particularly with fewer and fewer within an orchard over the last ten years — you tools for managing pests. Our focus needs to be on can take something like codling-moth trapping data the strategic pests where you have to think bigger than just your own orchard. FQ and see where your hot spots are. Digital systems

17

11001010010101010011010

001001000

11010101

010011010

01001000

0011010

301001000

0011010

1010101 0100100 1001101

0011010

1001000

001001000

001001000 011010

1001101

1001101

.001001000 1010101010

1001000100

01000100

11010100

0100010

101010

001000100

01101010

00100010

001000100

.001101010

1010101010 1001000100

0011010100

011010100

001000100 001000100

001000100

L001000100 1010100

011010100

001000100

1101010

1101010

010001

101010

110101

00100010 01101010

00100010

L001000100 1101010

10101010

001000100

011010100

001000100

001000100

10101010

11010100

00100010

.0011010100

010101

00100100

1**010**011010

01001001010100010010001001001001

There is great value in having a standard protocol for monitoring and data-capture so that everything can be pooled into a database for further analysis. If we can start by creating that platform for phytosanitary pests, we can build on it.